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Abstract. We propose a computational method to obtain series expansions in powers of time
for general dynamical systems described by a set of hierarchical rate equations. The method is
generally applicable to problems in both equilibrium and non-equilibrium statistical mechanics
such as random sequential adsorption, diffusion-reaction dynamics, and Ising dynamics. A new
result for random sequential adsorption of dimers on a square lattice is presented.

Most dynamical models in equilibrium and non-equilibrium statistical mechanics can be
described by a set of hierarchical rate equations: random sequential adsorptions (RSA)
and their variants [1], diffusion–reaction models [2], and kinetic Ising models [3]. The
specifications of interactions between the components of the system or interactions between
the environment and the system give a deterministic time evolution for the distribution
functions once the initial condition of the system is given. Exact solutions are often
restricted to simple models, while one has to use approximate methods for those that resist
exact analyses.

Power series expansion is one of the methods of controlled approximations. There are a
number of systematic methods to obtain time power series [4–7]. Long series were usually
obtained by reducing a problem to an enumeration problem similar to the series expansions
in equilibrium statistical mechanics [8].

Lattice enumeration problems are typically limited by CPU time due to their exponential
growth. In this letter, we discuss a general method to obtain series expansions based on
rate equations for lattice models. Our method differs from previous approaches in that the
limiting factor is memory space, but it is faster in time. The method is applicable to many
different problems, in particular RSA, RSA with diffusional relaxation, reaction–diffusion
problems, and general Ising dynamics.

To illustrate the method, we take the RSA of random dimer filling on a square lattice
as an example [9]. Dimers of random orientations are dropped randomly and sequentially,
at a rate ofk per lattice site per unit time, onto an initially empty, infinite square lattice.
Hereafter we setk equal to unity without loss of generality. If the chosen two nearest
neighbour sites are unoccupied, the dimer is adsorbed on the lattice. If one of the chosen
sites is occupied by a previously adsorbed dimer, the adsorption attempt is rejected. The
first few of an infinite number of rate equations for this process are given as follows:

dP(◦)

dt
= −4P(◦◦) (1)
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dP(◦◦)

dt
= −P(◦◦) − 2P(◦◦◦) − 4P(◦◦◦) (2)

dP(◦◦◦)

dt
= −2P(◦◦◦) − 2P(◦◦◦◦) − 4P(◦◦◦◦) − 2P(◦◦◦◦) (3)

dP(◦◦◦)

dt
= −2P(◦◦◦) − 2P(◦◦◦◦) − 2P(◦◦◦◦) − 2P(◦◦◦◦) − 2P(◦◦◦◦) (4)

· · ·
whereP(C) stands for the probability of finding a configurationC of sites specified empty
or filled. An ‘◦’ denotes an empty site. We have taken into account the symmetries of the
problem, i.e. the invariance ofP(C) under all lattice group operations (e.g. rotation and
reflection). For notational convenience we will usePC ≡ P(C).

Let C0 denote a particular configuration of interest, thenPC0 is the configuration
probability associated withC0. On physical grounds, we expectPC0 to be a well behaved
function of time t , and one would expect to obtain the Taylor expansionPC0(t) =
∞∑

n=0
PC0

(n)tn/n!, with the nth derivativeof PC0 given by

PC0
(n) = dnPC0(t)

dtn

∣∣∣∣
t=0

. (5)

The zeroth derivative ofPC0 is determined by the initial condition. The first derivative
of PC0 is obtained by the rate equation associated withC0. For the random dimer
deposition problem, we choose the configuration of an empty site to beC0. We have,
from equations (1)–(4),P(◦)(0) = 1 andP(◦)(1) = −4, P(◦◦)(1) = −7, P(◦◦◦)(1) = −10,
andP(◦◦◦)(1) = −10. To compute the second derivative ofP(◦), we take the first derivative
of equation (1) and use the result ofP(◦◦)(1) to obtainP(◦)(2) = (−4)(−7) = 28. For the
third derivativeP(◦)(3), we take the second derivative of equation (1), which in turn needs
the first derivative of equation (2). Using equations (2)–(4) for the first derivatives, we get
P(◦)(3) = −268.

To computerize the calculations with high efficiency, we make the following important
observations. For any configurationC, the rate equation is always of the form

dPC

dt
=

∑
C ′

λC ′PC ′ . (6)

This immediately gives us the first derivative ofPC ; in particular the first derivative ofPC0

of interest. Since the derivative operator is linear, the second derivative ofPC is a linear
combination of the first derivatives ofPC ′ on the right-hand side of the rate equation (6).
For each higher derivative, new rate equations and new configurations are involved. Let
Gi denote the set of new configurations generated in the calculation of theith derivative
of PC0, andG

j

i the correspondingj th derivatives of the set of configurations. We observe
thatGn−1

0 , Gn−2
1 , . . . , G0

n−1 (determined at the(n − 1)th derivative),Gn−2
0 , Gn−3

1 , . . . , G0
n−2

(determined at the(n − 2)th derivative), . . . , G0
0 are known before calculating thenth

derivative. In other words,Gj

i are predetermined where 06 i + j 6 n − 1 at this stage.
The derivativesGn

0, G
n−1
1 , . . . , G1

n−1, G
0
n, would then be determined in abottom-upfashion

by recursive use of the rate equations. The method is efficient in the sense that each value
in Gn−i

i , 0 6 i 6 n, is calculated exactly once and the rate equation for a configuration
C is also generated exactly once. By repeated use of this procedure, we can in principle
calculateGn

0 for any n > 1.
In most cases, knowledge of the initial condition of the system (usually one starts with

an initially empty lattice) can further improve the efficiency of the method. For example,
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let h be the highest order of derivative ofPC0 for which we wish to compute. Then only a
subsetGi

′, i 6 h, of Gi needs to be considered, once it is known that an element inGi −Gi
′

gives a zero contribution in the subsequent calculations. This observation is particularly
useful for models whichintroduceparticles in the rate equations; this is typical in models
involving desorption or diffusion.

To implement the above scheme, we store symbolically the rate equations and the
intermediate derivativesGj

i . For each configurationC, we store the configuration and
its first j derivatives known so far. The rate equation forC is generated when the first
derivative ofPC is needed, and the equation is represented as an array of pointers to other
configurations corresponding to the right-hand side of equation (6), and the corresponding
array of coefficientsλC ′ .

The structural part implementing the recursive use of rate equations is independent of
the details of a model. The function calls for a core routine to generate a rate equation if
it is not available. Symmetries of the problem are treated here. This routine is called only
once for each configurationC. To facilitate this, only a pointer of reference is used for
each unique configuration. Configurations are searched with the help of a hash table or a
tree data structure.

Table 1. Taylor expansion coefficients for the probability of finding an empty site of random
dimer filling on a square lattice.

n P (◦)(n)

0 1
1 −4
2 28
3 −268
4 3 212
5 −45 868
6 756 364
7 −14 094 572
8 292 140 492
9 −6 653 993 260

10 164 952 149 516
11 −4 416 119 044 972
12 126 863 203 272 268
13 −3 889 473 277 203 116
14 126 677 386 324 657 804

Table 2. CPU time and memory usage on a DEC3000/900 for the dimer problem.

Order Memory (Mbytes) Time (s)

9 1 1.0
10 3 4.4
11 12 22.0
12 47 114.7
13 182 612.8
14 706 3131.3

The merit of the approach allows us to obtain a series up tot14 for the RSA of dimers
on a square lattice (table 1). Results for other models will be published elsewhere. The
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computational costs are presented in table 2. Poland obtained the same series up tot7 [10].
For the RSA of monomer filling with nearest-neighbour exclusion on a square lattice, the
efficiency of our algorithm is comparable to the algorithm based on the operator formalism
[7], but it is not as good as the method used by Baram and Fixman [11]. However, the
power of our method is its generality.

Figure 1. Pad́e approximant estimates for the jamming coverageθ∞ as a function of the
transformation parameterb, in the crossing region.

The approach to the jamming state for lattice RSA is often exponential. We follow the
analysis of series by Dickmanet al [7]. First we transform the coverageθ(t) = 1−P(◦, t)

into a function ofy = 1− e−t . Another transformation, viaz = (1− e−by)/b, is performed
for the second time, and we examine various Padé approximants to thez series. As we
see from figure 1, the resulting estimates forθ∞ are excellent for 1.736< b < 1.742. The
intersections of [6, 8], [7, 7], [7, 6], [8, 6], [6, 7], and [5, 9] approximants around this range
of b yield an estimate ofθ∞ = 0.906 8088(4), where the last digit denotes the uncertainty.
This result is in good agreement with the simulation result of 0.906 873± 0.000 138 [12]
or the result of 0.9068 obtained via approximate truncation procedures [9].

In summary, we introduced a new approach to deriving power series expansions in time,
and we have applied the method to a RSA problem. For the RSA of dimers on a square
lattice, we are able to generate a 15-term series, thence to derive the most precise estimate
for the jamming coverage yet presented. Our computational method is general and it can
be used to handle a variety of problems based on rate equations, especially those that deal
with the kinetics of the lattice models.

This work is supported in part by a National University of Singapore Academic Research
Grant RP950601. Calculations were performed on the facilities of the Computation Center
of the Institute of Physical and Chemical Research.
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